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Abstract
Functional magnetic resonance imaging (fMRI) is essen-

tial for developing encoding models that identify functional
changes in language-related brain areas of individuals with
Neurocognitive Disorders (NCD). While large language model
(LLM)-based fMRI encoding has shown promise, existing stud-
ies predominantly focus on healthy, young adults, overlooking
older NCD populations and cognitive level correlations. This
paper explores language-related functional changes in older
NCD adults using LLM-based fMRI encoding and brain scores,
addressing current limitations. We analyze the correlation be-
tween brain scores and cognitive scores at both whole-brain and
language-related ROI levels. Our findings reveal that higher
cognitive abilities correspond to better brain scores, with corre-
lations peaking in the middle temporal gyrus. This study high-
lights the potential of fMRI encoding models and brain scores
for detecting early functional changes in NCD patients.
Index Terms: encoding model, brain score, large language
model, neurocognitive disorder

1. Introduction
Neurocognitive Disorder (NCD) is a general term for describing
neurocognitive decline beyond normal aging caused by various
conditions, such as Alzheimer’s disease and brain vascular dis-
eases [1,2]. It poses major challenges to individuals’ well-being
and the society [3]. Early detection of NCD is critical because it
is possible to halt or even reverse its progression during the early
stage, but much less possible at its later stage [4, 5]. Deficits in
language functions are one of the major symptoms of various
types of NCD [6, 7], and the changes of language-related func-
tions in the brain may emerge before structural brain changes
and overt NCD symptoms appear [8]. Therefore, it is promis-
ing to detect language-related functional changes in the brain as
a mean of early NCD detection.

Functional magnetic resonance imaging (fMRI) is widely
used to study language-related functional changes in the
brain. FMRI measures brain activity by recording the blood-
oxygenation-level changes in the brain noninvasively with high
spatial resolution. And the brain encoding models built upon
fMRI signals and large language models (LLMs) provide re-
searchers in cognitive neuroscience with a powerful computa-
tional tool to quantify and locate language-related functions in
the human brain, and such models have attracted wide atten-
tion in recent years [9–17]. They also show us a feasible way
to quantify language-related functional changes among older
adults and help the early detection of NCD.

The fMRI encoding models are used for predicting brain
activation from language stimuli. A central goal of such models
is to reveal how and where linguistic features at various lev-

els, such as semantic and syntactic, are processed within the
brain [10, 11]. The typical pipeline for building up a traditional
language-related fMRI encoding model is as follows: 1) A set
of linguistic features are extracted first from the same language
stimuli that human subjects have heard or read. These fea-
tures can be expert-designed or -encoded simple features (e.g.
word count and spectrum) or higher-level contextual embed-
dings from layers of an LM; 2) a voxel-wise linear regression
is then fitted upon these features to predict the fMRI signals
in different voxels or brain regions. Given a fitted encoding
model, brain scores will be calculated, i.e. the correlation r or
determination coefficient R2 between the predicted and actual
fMRI signals. A brain score reflects the strength of association
between a brain voxel’s activity and a specific language pro-
cess, depending on which linguistic features were extracted at
the very beginning. These brain scores thus can help pinpoint
brain voxels and regions involved in the processing of specific
language features.

Recent developments in LLMs have made it more efficient
to build language-related fMRI encoding models [18–20]. Par-
ticularly, the embedding of middle layers of an LLM can effec-
tively represent language features (e.g., semantic and syntac-
tic features) that are highly relevant to NCD symptoms [6, 7],
while these features are challenging to code in traditional ways
(e.g., manually code) or experimentally controlled. Caucheteux
et al. [9] have revealed that the similarity between the LLMs
and the brain primarily depends on their ability to predict words
from context. Based on the encoding model of GPT-2, they fur-
ther strengthened the role of hierarchical predictive coding in
language processing [11]. It is even more encouraging that Tang
et al. [13] have demonstrated the feasibility of recovering the in-
telligible meaning of perceived speech from fMRI signals using
a semantic encoding model based on GPT-1. Beyond the GPT
family, Antonello et al. [14] have tested the OPT and LLaMA
families and found that the brain score of semantic encoding
models increases logarithmically with LLM size. These stud-
ies used brain scores obtained from different feature spaces of
LLMs to locate brain regions related to language functions of
different levels, promoting our understanding of complex lan-
guage processing in the human brain.

Limitations in previous research. 1) The above-
mentioned research on LLM-based fMRI encoding models only
involved young and healthy subjects. No study has yet used
such models to investigate functional changes in older adults,
especially those with NCD. 2) Existing studies mostly use brain
scores to identify brain regions relevant to language processing,
and only a few studies have reported the relationship between
brain scores and subjects’ performance on self-paced reading
tasks or story comprehensions [15,16]. The correlation between
brain scores and cognitive levels needs further analysis.
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Figure 1: Construction of a language encoding model based
on the movie-watching task, and the correlation between brain
scores and MoCA scores.

In our study, we built an fMRI encoding model for older
adults in the early stage of NCD or at risk and explored the cor-
relation between brain scores and the subjects’ overall cognitive
functioning levels. We aim to provide evidence for the feasibil-
ity of using brain scores obtained from fMRI encoding models
to build interpretable models for the early detection of NCD in
the future. We makes the following contributions:
• As far as we know, this is the first study that applies the fMRI

encoding model based on LlaMA2 to study NCD subjects.
The model generates brain scores to quantify the associa-
tion between brain areas and language functions among NCD
subjects;

• We find that brain scores for the higher cognitive-level group
are consistently better than those of the lower cognitive-level
group, and the correlation between brain scores and cogni-
tion peaks in the middle temporal gyrus (r = 0.368) and the
superior frontal gyrus (r = 0.289);

• This study provides a feasible direction for further de-
veloping interpretable machine-learning models based on
language-related fMRI signals for early NCD detection.

2. Data Collection
By the time of analysis, data had been collected from 95 older
adults in the following two tasks. Statistics of subjects are re-
ported in Table 1.

Movie-watching fMRI task. The data in this study was
from a group of Hong Kong older adults who were at risk of
NCD or had been diagnosed with mild NCD (i.e., mild cogni-
tive impairment). These participants were fMRI scanned when
watching an 11-minute clip from a Cantonese movie “Sweet
Home.” The movie clip contains everyday scenes with family
members engaging in dialogues or monologues. With speech
embedded in multimodal information (video, audio, subtitles;
see Figure 1), this task allows us to examine brain functions
involved in the processing of language in a naturalistic context.

The fMRI signals were acquired using a Siemens MAG-
NETOM Prisma 3 Tesla MRI Scanner with a 64-Channel
Head/Neck coil. A multiband (factor = 6) gradient echo echo-
planar (EPI) sequence was used to scan the whole brain with the
following parameters: repetition time (TR) = 900 ms, echo time
(TE) = 24 ms, flip angle = 90°, voxel size = 2 × 2 × 2 mm3, ma-
trix size = 104 × 104, field of view (FoV) = 206 × 206 mm2, and
number of slice = 72. For each participant, 736 fMRI images

Table 1: Statistics of subjects.

Feature Male (n = 52) Female (n = 43)
Mean Std. Mean Std.

Age 72.35 6.03 71.09 6.24
Education 9.25 3.90 6.70 3.67

MoCA 20.9 4.00 19.05 4.11

(i.e., 735 TRs) were collected during the movie-watching task.
Standardized preprocessing procedures were performed using
the SPM12 toolkit [21] for denoising, which includes field map
correction, realignment, co-registration, normalization into the
standard MNI space, and spatial smoothing. Only fMRI signals
from the gray matter in the brain were included for analysis.
Head-motion parameters were regressed out as confounders.

HK-MoCA test. The Hong Kong version of the Montreal
Cognitive Assessment (HK-MoCA) [22] was used to assess par-
ticipants’ cognitive function. MoCA is a well-established neu-
rocognitive test for NCD diagnosis, which assesses a range of
key cognitive functions, such as attention, memory, language,
and visuospatial skills [23]. The test score ranges between 0
and 30, with a higher score indicating a better cognitive state.

3. Approach
3.1. LlaMA2-Cantonese and Context Features

An open-source LlaMA2-7b-Cantonese model (https://
huggingface.co/indiejoseph) is applied to extract
context features for each Cantonese word appearing in the
movie. The original LlaMA2-7b, released by Meta [18], has
32 layers and is trained on a mix of publicly available online
data (with English accounting for 89.7% and Chinese account-
ing for 0.13%), with a context length of 4k. Since it employs
a byte pair encoding algorithm to decompose unknown UTF-8
characters, it can also encode the context knowledge of Can-
tonese. However, to better adapt to the Cantonese context, the
LlaMA2-7b-Cantonese used in this study is further trained on
the LlaMA2-7b model using additional Cantonese corpus.

The context feature of the word si is extracted based
on the next-word-prediction task: for each word-time pair
(si, ti), LlaMA2-Cantonese takes a word sequence S =
(si−255, · · · , si−1, si) as input, and its hidden layer activa-
tions provide vector embeddings that represent the meaning
of si within a context length of 256. This yields a high-
dimensional vector-time pair (Xi, ti) where Xi is a 4096-
dimensional context representation for si. Then, three steps
are conducted before we obtain the final stimulus matrix (as
shown in Figure 2): (1) these vectors are resampled at times
corresponding to the fMRI acquisitions using a three-lobe Lanc-
zos filter [13, 24]; (2) vectors are reduced to d = 90 dimen-
sions using PCA for computational efficiency; (3) finally, based
on the linearized finite impulse response (FIR) model [25],
(Xi−6,Xi−5, · · · ,Xi−1), i.e. context representations from
0.9s to 5.4s earlier before the timepoint ti, are concatenated
to predict the fMRI signal, (yi, ti). We then obtain the final
context stimulus matrix X ∈ R#TR×6d, time-aligned with the
processed fMRI signal Y ∈ R#TR×1 of a brain voxel.

3.2. Encoding Model and Hyperparameter Selection

Let f (X) represent the brain encoding model. Following the
work of [14], we select f as a voxel-wise linear transforma-
tion between X and Y for interpretability. For each subject s,
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Figure 2: Stimulus matrix construction with time alignment,
feature dimension reduction and finite impulse response (FIR)
model [11]. D and d are feature dimensions before and after
PCA. TR is the repetition time of fMRI.

voxel v, and LlaMA2-Cantonese layer li, we fit a separate en-
coding model fs,v (Xli) := XliW

li
s,v , using linearized ridge

regression, to predict the fMRI signal Ys,v , where W li
s,v are the

learnable weight parameters. The final objective function is:

min
W

li
s,v

∥Y li
s,v −XliW

li
s,v∥2F + λs,v∥W li

s,v∥2F (1)

where ∥ · ∥F denotes the Frobenius norm, and λs,v is the only
hyperparameter representing the regularization weight. Each
λs,v is selected independently for each voxel in each subject.

Specifically, 20% of the data samples (continuous in the
time dimension) are held out as the test set. In contrast, the re-
maining data samples are divided into training and validation
sets for regression and hyperparameter selection using a boot-
strap method [13]. In each iteration, the model weights are esti-
mated on the training set for each of 10 possible regularization
coefficients (log spaced between 10 and 1000). These weights
are used to predict responses in the validation set, followed by
the calculation of R2 between the actual and predicted fMRI
time series. The regularization coefficient for each voxel is cho-
sen based on the value that yields the best performance on the
validation set, averaged across 50 bootstraps. After all param-
eters are finalized, the encoding model is applied to the test set
to obtain the brain score (i.e., R2) for each voxel.

3.3. Experimental Design

Brain score analysis of the whole brain. We computed the
brain score for the entire brain of each subject, averaging across
all voxels, with various activation layers of LlaMA2-Cantonese.
The Pearson correlation between the brain score and the subject
group’s MoCA score was subsequently calculated using pear-
sonr in Scipy toolkit of Python.

Brain score analysis within language-related ROIs. We
focus on language-related ROIs for two reasons: 1) early func-
tional changes in NCD subjects occur in language brain areas;
2) the movie-watching task could activate brain regions related
to vision, and the ROI analysis can reduce the influence from
other cognitive processes to some extent.

Consequently, our study uses the brain parcellation from the
Destrieux cortical deterministic atlas (dated 2009) [26] to iden-
tify language-related ROIs [27, 28] in both brain hemispheres,
including the precuneus, angular gyrus (AG), inferior temporal
gyrus (ITG), middle temporal gyrus (MTG), superior tempo-
ral gyrus (STG), superior frontal gyrus (SFG), middle frontal
gyrus (MFG), and inferior frontal gyrus (IFG). These ROIs cor-
respond to a total of 26 labels in the Destrieux atlas. We then
analyzed the brain scores of each ROI and their Pearson corre-
lations with MoCA scores.

Statistical significance To assess the statistical significance
of the Pearson correlations between brain scores and MoCA
scores, we conducted two-tailed t-tests with p < 0.05. The
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Figure 3: Average brain score across different cognitive groups
and activation layers (the bar plot), and the correlation between
brain score and MoCA score (the blue line). The red dot means
the correlation of that layer is significant.

Benjamini-Hochberg False Discovery Rate (FDR) [29] correc-
tion was used to adjust the p-values for multiple comparisons.

4. Results and Discussions
4.1. Brain Score Analysis of the Whole Brain

The blue bars in Figure 3 display the average brain scores for
the entire subject group. The 95 subjects are further divided
into two subgroups: the higher cognitive subgroup with MoCA
scores > 20 and the lower cognitive subgroup with MoCA ≤
20, where 20 is the median of their MoCA scores.

The overall trend indicates that the average brain scores for
different cognitive groups reach peaks simultaneously in the rel-
atively early layers (from the 7th to the 16th layer), followed by
a gradual decline. Their trend lines align well with [14], which
reported that the performances of semantic encoding models
for three young adults fitted by LlaMA2-30B or LlaMA2-65B
reach a peak between 20% and 40% of the layer depth. These
similar patterns across different cognitive subgroups and lan-
guage stimuli suggest both the effectiveness and the general na-
ture of the encoding model fitted by LlaMA2.

Comparing the two cognitive subgroups, the average brain
score for the higher cognitive group is consistently better than
that of the lower cognitive group. The averaged ∆(R2) =
1.28 × 10−3 across 32 layers, with a standard deviation of
1.53 × 10−4 indicating that the fMRI signal within the higher
cognitive subgroup more closely aligns with context represen-
tations. This gap could arise from two possible reasons: 1) in-
dividuals with higher cognitive abilities may have followed the
dialogue more closely during the task; or 2) their brains could
process context information more similarly to LlaMA2.

The Pearson correlation between the brain scores and
MoCA scores for the entire group is depicted as the blue line
in Figure 3. Correlation coefficients reach 0.25 in layers 1, 2,
and 8, and drop significantly after layer 16. Along with brain
score performance, we focus on the encoding model fitted by
the 8th layer in the subsequent ROI analysis.

4.2. Brain Score Analysis in Language-related ROIs

In Figure 4, the average brain score and correlation coefficient
of each ROI are projected onto the fsaverage5 brain surface us-
ing vol to surf in nilearn toolkit. As illustrated in Figure 4c,
only 9 out of 26 ROIs pass the significance test for correlation



Figure 4: (a) Averaged brain score map (activated by the 8th layer) for language-related ROIs. (b) Map of Pearson correlation
coefficients between the averaged brain scores and MoCA scores. (c) Relationship between the averaged brain scores of ROIs and
correlation coefficients. The number next to the point indicates the label number of the ROI in the Destrieux atlas. Red points represent
ROIs with an adjusted p-value < 0.05; (d) Regression plot of MoCA scores and brain scores for the middle temporal gyrus (MTG).

(p < 0.05 adjusted using FDR): MTG (labels 38, 113), Pre-
cuneus (labels 30, 105), AG (labels 25, 100), Left-SFG (label
16), and SFS (labels 55, 130).

The lateral STG (labels 109, 34), AG, and the plan-tempo
STG in the left hemisphere (label 36) exhibit higher brain scores
(figure 4a). However, only the AG is significantly correlated
with the MoCA score, with r100 = 0.253 and r25 = 0.245 (fig-
ure 4b,c). We propose that the STG primarily encodes lower-
level semantic information, as supported by [30, 31]. Conse-
quently, the STG may be associated with perception but not
strongly correlated with high-level semantic understanding.

To our surprise, although the MTG in the left hemisphere
has a medium brain score of 8.7 × 10−3, it attains the high-
est correlation coefficient of r38 = 0.37 (adjusted p < 0.001).
The detailed regression between the brain score of MTG and the
MoCA score is plotted in Figure 4d. These findings are consis-
tent with [16], which reported that the correlation between brain
scores and comprehension scores peaks in the AG and MTG.

4.3. Effect of Cantonese Pretraining

To investigate the impact of additional Cantonese corpus on
LLaMa2-Cantonese, we refitted the encoding model using the
representations of the original LLaMa2 and calculated the aver-
age brain scores along with their correlations to MoCA scores.
Results in Table 2 indicate that no significant difference in brain
scores or correlations exist, except for the correlation at layer 8,
which is 4.9% higher after Cantonese pretraining. This can be
attributed to the fact that Cantonese pretraining did not alter the
structure or embedding representations of LLaMA2.

Table 2: Performance comparison of LlaMA2-7b and LlaMA2-
7b-Cantonese. Corr. refers to Pearson correlation coefficients.

Layer LlaMA2 LlaMA2-Cantonese
Brain score Corr. Brain score Corr.

1 6.25× 10−3 0.2532 6.23× 10−3 0.2535
8 7.50× 10−3 0.2384 7.55× 10−3 0.2500

16 7.53× 10−3 0.2331 7.53× 10−3 0.2351
24 7.18× 10−3 0.1993 7.05× 10−3 0.2070
32 7.34× 10−3 0.2027 7.36× 10−3 0.2100

5. Conclusion
Focusing on older adults with NCD, this study extracted con-
text representation from LlaMA2-Cantonese to model language
stimuli in a movie-watching task and innovatively employed the
fMRI encoding model and brain scores to assess their language
function. We found that subjects with better cognitive states
have significantly higher brain scores, and the correlation pat-
tern peaks at language-related ROIs, e.g. MTG, SFG, and AG.

The primary limitation of this study is the uncertainty sur-
rounding the extent of semantic or syntactic information con-
tained in the embeddings of LLaMA2-Cantonese. Moreover,
the brain areas responsible for language processing may also be
activated by semantic stimuli generated through vision [32]. In
the future, multi-modal semantic information should be com-
prehensively considered to construct a robust encoding model
for the understanding of the interplay between different modal-
ities and language functions.
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